A Comparative Study of Infill Sampling Criteria for Computationally Expensive Constrained Optimization Problems
نویسندگان
چکیده
منابع مشابه
Enhancing infill sampling criteria for surrogate-based constrained optimization
Apopular approach to handling constraints in surrogate-based optimization is through the additionof penalty functions to an infill sampling criterion that seeks objective improvement. Typical samplingmetrics, such as expected improvement tend to have multimodal landscapes and can be difficult to search. When the problem is transformed using a penalty approach the search can become riddled with ...
متن کاملComparison of Infill Sampling Criteria
Kriging-based optimization methods are of great interest for aerodynamic design optimization where high-fidelity thus timeconsuming computational fluid dynamics (CFD) are used. In the framework of kriging-based optimization, a core technique called sampling infill criteria (also called adaptive sampling) is used both to search the design space and to refine the surrogate models. Among all the i...
متن کاملMemetic algorithm using multi-surrogates for computationally expensive optimization problems
In this paper, we present a Multi-Surrogates Assisted Memetic Algorithm (MSAMA) for solving optimization problems with computationally expensive fitness functions. The essential backbone of our framework is an evolutionary algorithm coupled with a local search solver that employs multi-surrogates in the spirit of Lamarckian learning. Inspired by the notion of 'blessing and curse of uncertainty'...
متن کاملEvolutionary Optimization for Computationally expensive problems using Gaussian Processes
The use of statistical models to approximate detailed analysis codes for evolutionary optimization has attracted some attention [1-3]. However, those early methodologies do suffer from some limitations, the most serious of which being the extra tuning parameter introduceds. Also the question of when to include more data points to the approximation model during the search remains unresolved. Tho...
متن کاملEvolutionary Optimization of Computationally Expensive Problems via Surrogate Modeling
We present a parallel evolutionary optimization algorithm that leverages surrogate models for solving computationally expensive design problems with general constraints, on a limited computational budget. The essential backbone of our framework is an evolutionary algorithm coupled with a feasible sequential quadratic programming solver in the spirit of Lamarckian learning.We employ a trust-regi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Symmetry
سال: 2020
ISSN: 2073-8994
DOI: 10.3390/sym12101631